

This Version: October 2022

Rebuilding Rails is copyright Noah Gibbs, 2012-2022

Cover photo by zibik on Unsplash

This ebook, including the commercial version, is DRM-free.
Please copy for yourself and only yourself.

2

0. Rebuilding Rails for Yourself 6

Why Rebuild Rails? 6

Who Should Rebuild Rails? 6

Working Through 7

Books vs Videos 7

Cheating 8

0.5 Getting Set Up 10

1. Zero to “It Works!” 12

In the Rough 12

Hello World, More or Less 16

Making Rulers Use Rack 17

Review 19

In Rails 19

Not In Rails, But... 22

Exercises 23

Exercise One: Reloading Rulers 23

Exercise Two: Your Library’s Library 24

Exercise Three: Test Early, Test Often 25

Exercise Four: Other Application Servers 28

Exercise Five: Ignoring Files 29

2. Your First Controller 31

Sample Source 31

On the Rack 32

Routing Around 32

3

It Almost Worked! 36

Review 38

Exercises 38

Exercise One: Debugging the Rack Environment 38

Exercise Two: Debugging Exceptions 40

Exercise Three: Roots and Routes 41

In Rails 41

3. Rails Automatic Loading 43

Sample Source 43

Answers to Exercises 46

Chapter 1 46

Chapter 2 46

Appendix: Installing Ruby, Git, Bundler and SQLite3 49

Ruby 49

Windows 49

Mac OS X 49

Ubuntu Linux 49

Others 49

Git (Source Control) 50

Windows 50

Mac OS X 50

Ubuntu Linux 50

Others 50

Bundler 50

4

SQLite 51

Windows 51

Mac OS X 51

Ubuntu Linux 51

Others 52

Other Rubies 52

5

0. Rebuilding Rails for Yourself
Why Rebuild Rails?

Knowing the deepest levels of any piece of software lets you
master it. It’s a special kind of competence you can’t fake. You
have to know it so well you could build it. What if you did build it?
Wouldn’t that be worth it?

This book will take you through building a Rails-like framework
from an empty directory, using the same Ruby features and
structures that make Rails so interesting.

Ruby on Rails is known for being “magical”. A lot of that magic
makes sense after you’ve built with those Ruby features.

Also, Ruby on Rails is an opinionated framework; the Rails team
says so, loudly. What if you have different opinions? You’ll build a
Rails-like framework, but you’ll have plenty of room to add your
own features and make your own trade-offs.

Whether you want to master Rails exactly as it is or want to build
your own personal version, this book can help.

Who Should Rebuild Rails?

You’ll need to know some Ruby. If you’ve built several little Ruby
apps or one medium-sized Rails app, you should be fine. If you
consult the pickaxe book as you go along, that helps too (“https://
ruby-doc.com/docs/ProgrammingRuby/”). You should be able to
write basic Ruby without much trouble.

If you want to brush up on Rails, Michael Hartl’s tutorials are
excellent: “https://railstutorial.org/book”. There’s a free HTML
version of them, or you can pay for PDF or screencasts. Some

6

https://ruby-doc.com/docs/ProgrammingRuby/
https://ruby-doc.com/docs/ProgrammingRuby/
https://railstutorial.org/book

concepts in this book are clearer if you already know them from
Rails.

In most chapters, we’ll use a little bit of Ruby magic. Each chapter
will explain as we go along. None of these features are hard to
understand. It’s just surprising that Ruby lets you do it!

Working Through

Each chapter is about building a system in a Rails-like framework,
which we’ll call Rulers (like, Ruby on Rulers). Rulers is much
simpler than Rails. But once you build the simple version, you’ll
know what the complicated version does and a lot of how it works.

Later chapters have a link to source code -- that’s what book-
standard Rulers looks like at the end of the previous chapter. You
can download the source and work through any specific chapter
you’re curious about.

Late in each chapter are suggested features and exercises. They’re
easy to skip over, and they’re optional. But you’ll get much more
out of this book if you stop after each chapter and think about
what you want in your framework. What does Rails do that you
want to know more about? What doesn’t Rails do but you really
want to? Does Sinatra have some awesome feature that Rails
doesn’t? The best features are the ones you care about!

Books vs Videos

This ebook and the Rebuilding Rails video course can both be
useful. If you signed up for my email list, you’ve already seen links
to the first couple of video chapters. So how are they different?

The videos are intended to be shorter, simpler and more to-the-
point. They’ll walk you through very specific code without
exercises or detours, and with fewer little interesting bits of Ruby

7

trivia. They’re the fastest way to get from no framework, to having
built a framework. There will be less debugging, less open-ended
challenge and less creativity. They’ll take less of your time, and
you’ll learn a smaller, more specific set of things, faster.

Which one is “better” depends a lot on your goals. If you’re trying
to say “I finished!” as fast as possible, the videos do that better. If
you’re trying to learn debugging and framework design, the book
will do more of that. There’s nothing wrong with a “hold your
hand” learning experience. There’s nothing wrong with an “open-
ended exploration” learning experience. You probably have a
preference, though.

A word of caution: do not mix code from the ebook and the
videos. They’re similar enough to look like they’ll work together,
but they don’t. You can’t work through chapter 3 of the ebook and
then start chapter 4 of the videos from the same code. You can
download the given chapter 4 code and then start chapter 4. See
the next section for details.

Cheating

You can download next chapter’s sample code from GitHub
instead of typing chapter by chapter. You’ll get a lot more out of
the material if you type it yourself, make mistakes yourself and,
yes, painstakingly debug it yourself. But if there’s something you
just can’t get, use the sample code and move on. It’ll be easier on
your next time through the book.

It may take you more than one reading to get everything perfectly.
Come back to code and exercises that are too much. Skip things
but come back and work through them later. If the book’s version
is hard for you to get, go read the equivalent code in Rails, or in a
simpler framework like Sinatra. Sometimes you’ll need to see a
concept explained in more than one way.

8

There are exercises at the end of each chapter. There are answers
to the exercises near the end of the book.

At the end of the chapter are pointers into the Rails source for the
Rails version of each system. Reading Rails source is optional. But
even major components (ActiveRecord, ActionPack) are still
around 25,000 lines - short and readable compared to most
frameworks, with great test coverage. And generally you’re
looking for some specific smaller component, often between a
hundred and a thousand lines.

You’ll also be a better Rails programmer if you take the time to
read good source code. Rails code is very rich in Ruby tricks and
interesting examples of metaprogramming.

9

0.5 Getting Set Up
You’ll need:

• Ruby

• a text editor

• a command-line or terminal

• Git (preferably)

• Bundler.

• SQLite, only for one later chapter... But it’s a good one!

If you don’t have them, you’ll need to install them. This book
contains an appendix with current instructions for doing so. Or
you can install from source, from your favorite package manager,
from RubyGems, or Google it and follow instructions.

Nothing here uses recently-added Ruby features, so any vaguely
recent Ruby is great.

By “text editor” above, I specifically mean a programmer’s editor.
More specifically, I mean one that uses Unix-style newlines. On
Windows this means a text editor with that feature such as
Notepad++, Sublime Text or TextPad. On Unix or Mac it means
any editor that can create a plain text file with standard newlines
such as TextEdit, Sublime Text, AquaMacs, vim or TextMate.

I assume you type at a command line. That could be Terminal,
xterm, Windows “cmd” or my personal favourite: iTerm2 for Mac.
The command line is likely familiar to you as a Ruby developer.
This book instructs in the command line because it is the most
powerful way to develop. It’s worth knowing.

10

It’s possible to skip git in favour of different version control
software (Mercurial, DARCS, Subversion, Perforce...). It’s highly
recommended that you use some kind of version control. It should
be in your fingers so deeply that you feel wrong when you
program without version control. Git is my favourite, but use your
favourite. The example text will all use git and you’ll need it if you
grab the (optional) sample code. If you “git pull” to update your
sample repo, make sure to use “-f”. I’m using a slightly weird
system for the chapters and I may add commits out of order.

Bundler is already part of most recent Rubies. If you don’t already
have it, it’s just a Ruby gem -- you can install it with “gem install
bundler”. Gemfiles are another excellent habit to cultivate, and
we’ll use them throughout the book.

SQLite is a simple SQL database stored in a local file on your
computer. It’s great for development, but please don’t deploy on
it. The lessons from it apply to nearly all SQL databases and
adapters in one way or another, from MySQL and PostgreSQL to
Oracle, VoltDB or JDBC. You’ll want some recent version of
SQLite 3. As I type this, the latest stable version is 3.7.11.

You may see minor differences in Ruby or Bundler output,
depending on version. Small differences are to be expected:
software changes frequently.

11

1. Zero to “It Works!”
Now that you’re set up, it’s time to start building. Like Rails, your
framework will be a gem (a Ruby library) that an application can
include and build on. Throughout the book, we’ll call our
framework “Rulers”, as in “Ruby on Rulers”.

In the Rough

First create a new, empty gem using "bundle gem rulers".
Depending on your version of Bundler, you'll get slightly different
output. Here's the old, simpler way:

$ bundle gem rulers
 create rulers/Gemfile
 create rulers/lib/rulers.rb
 create rulers/lib/rulers/version.rb
 #...
Initializating git repo in src/rulers
Gem 'rulers' was successfully created. For more
information on making a RubyGem visit https://
bundler.io/guides/creating_gem.html

Newer Bundler will ask you a lot of questions about what to
include. I recommend saying "no" to basically everything - any of
it can be added later, and you won't be distributing this code.

Rulers is a gem (a library), and so it declares its dependencies in
rulers.gemspec. Open that file in your text editor. You can
customize your name, the gem description and so on if you like.
You can customize various sections like this:

12

rulers.gemspec
spec.name = "rulers"
spec.version = Rulers::VERSION
spec.authors = ["Singleton Ruby-Webster"]
spec.email = ["webster@singleton-rw.org"]
spec.homepage = ""
spec.summary = %q{A Rack-based Web Framework}
spec.description = %q{A Rack-based Web Framework,
 but with extra awesome.}

Traditionally the summary is like the description but shorter. The
summary is normally about one line, while the description can go
on for four or five lines.

Make sure to replace “FIXME” and “TODO” in the descriptions -
“gem build” won't work as long as they're there.

There's also a section that starts with a comment about "Prevent
pushing this gem to RubyGems.org". The whole purpose of the
section is to prevent you from pushing your gem to RubyGems.org
with a "rake push" command. You're just building a learning
framework - and if it's named "rulers" then you can't push it to
RubyGems anyway, because that name is taken. So you can just
remove the whole section, both the "if" and "else" parts, rather
than filling in all the "TODO" strings with real data.

In a bit, you’ll need to add a dependency at the bottom. The old
way to do it looks roughly like this (don't add these
examples):

Don't Add These, Please
spec.add_development_dependency "pry"

13

mailto:joe@blow.name
http://RubyGems.org
http://RubyGems.org

spec.add_runtime_dependency "rest-client"
spec.add_runtime_dependency "some_gem", "1.3.0"
spec.add_runtime_dependency "other_gem", ">0.8.2"

Each of these adds a runtime dependency (needed to run the gem
at all) or a development dependency (needed to develop or test
the gem). If you see them, add the following:

spec.add_runtime_dependency "rack", "~>2.2"

(NOTE: this should be a runtime dependency, not a
development dependency like the other ones in rulers.gemspec!)

However, newer versions of Bundler use a different method call:
"add_dependency" instead of "add_runtime_dependency". If
you're using newer Bundler, use add_dependency instead of
add_runtime_dependency throughout this book.

Rack is a gem to interface your framework to a Ruby application
server such as Thin, Puma, Passenger, WEBrick or Unicorn. An
application server is a special type of web server that runs server
applications, often in Ruby. In a real production environment you
would run a web server like Apache or NGinX in front of the
application servers. But in development we’ll run a single
application server and no more. Luckily an application server also
works just fine as a web server.

We’ll cover Rack in a lot more detail in the Controllers chapter,
and again in the Middleware chapter. For now, you should know
that Rack is how Ruby turns HTTP requests into code running on
your server.

14

I’m also going to change the version number to 0.0.1 - I have a
sentimental attachment to it. To do that, open the file rulers/lib/
rulers/version.rb and change the version from 0.1.0 to 0.0.1:

rulers/lib/rulers/version.rb
module Rulers
 VERSION = "0.0.1"
end

Let’s build your gem and install it:

> gem build rulers.gemspec
> gem install rulers-0.0.1.gem

Did it fail, complaining about invalid links, invalid URLs or
TODOs? Go back into the gemspec and fix all the boilerplate
entries like "TODO: Put your gem's website or public repo URL
here" - replace them with the real thing. For "homepage" you're
allowed to just use the empty string.

Eventually we’ll use your gem from the development directory
with a Bundler trick. But for now we’ll do it the simple way - build
and install the gem locally after each change. Repeating that
technique will get it in your fingers. It’s always good to know the
simplest way to do a task -- you can fall back to it when clever
tricks aren’t working.

Be careful - if you type "bundle install" without the Rulers gem
already installed, you may get the version of Rulers (or whatever
you called your library) from RubyGems.org! In a later chapter
we'll add a trick to fix that. But for now, remember that you'll

15

http://RubyGems.org

need to install Rulers manually, and that typing "bundle install"
isn't your friend.

Hello World, More or Less

Rails is a library like the one you just built. But what application
will you run with your framework? We’ll start a very simple app
where you submit favourite quotes and users can rate them. Rails
would use a generator for this (“rails new best_quotes”), but we’re
going to do it manually.

Make a directory and some subdirectories:

> mkdir best_quotes
> cd best_quotes
> git init
Initialized empty Git repository in src/
best_quotes/.git/
> mkdir config
> mkdir app

This directory should be next to rulers. Neither one is nested
inside the other. You can make different directory structures
work, but I’m going to teach you the one that’s the most like Rails,
and the most like making your own framework ‘for real.’

You'll also want to make sure to use your library. Add a Gemfile:

best_quotes/Gemfile
source 'https://rubygems.org'
gem "rulers" # Your gem name

16

https://rubygems.org

Then run "bundle install" to create a Gemfile.lock and make sure all
dependencies are available.

We'll build from a trivial rack application. Create a config.ru file:

best_quotes/config.ru
run proc {
 [200, {'Content-Type' => 'text/html'},
 ["Hello, world!"]]
}

Rack’s “run” means “call that object for each request”. In this case
the proc returns success (200) and “Hello, world!” along with the
HTTP header to make your browser display HTML.

Now you have a simple application which shows "Hello, world!”
You can start it up by typing "rackup -p 3001" and then pointing a
web browser to "http://localhost:3001". You should see the text
"Hello, world!" which comes from your config.ru file.

(Problems? If you can’t find the rackup command, make sure you
updated your PATH environment variable to include the gems
directory, back when you were installing Ruby and various gems!
A ruby manager like rvm or rbenv can do this for you. Also, make
sure that the "rack" dependency in rulers.gemspec is a runtime
dependency, not a development dependency!)

Making Rulers Use Rack

In your Rulers directory, open up lib/rulers.rb. Change it to the
following:

rulers/lib/rulers.rb

17

http://localhost:3001

require "rulers/version"

module Rulers
 class Application
 def call(env)
 [200, {'Content-Type' => 'text/html'},
 ["Hello from Ruby on Rulers!"]]
 end
 end
end

Build the gem again and install it (gem build rulers.gemspec; gem
install rulers-0.0.1.gem). Now change into your application
directory, best_quotes.

Now you can use the Rulers::Application class. Under
best_quotes/config, create a new file application.rb and add the
following:

best_quotes/config/application.rb
require "rulers"

module BestQuotes
 class Application < Rulers::Application
 end
end

The "BestQuotes" application object should use your Rulers
framework and show “Hello from Ruby on Rulers” when you use
it. To use it, open up your config.ru, and change it to say:

18

best_quotes/config.ru
require './config/application'
run BestQuotes::Application.new

Now when you type "rackup -p 3001" and point your browser to
"http://localhost:3001", you should see "Hello from Ruby on
Rulers!". You've made an application and it's using your
framework!

Review

In this chapter, you created a reusable Ruby library as a gem. You
included your gem into a sample application. You also set up a
simple Rack application that you can build on using a Rackup file,
config.ru. You learned the very basics of Rack, and hooked all
these things together so that they're all working.

From here on out you'll be adding and tweaking. But this chapter
was the only time you start from a blank slate and create
something from nothing. Take a bow!

In Rails

By default Rails includes many reusable gems. The actual "Rails"
gem contains very little code. Instead, it delegates to the
supporting gems. Rails itself just ties them together. So the
“railties” gem is glue between all those components - so Rails
doesn't even really tie them together. That's what railties does!.

The Rails command allows you to change many of its components
- you can specify a different ORM than ActiveRecord, a different
testing library, a different Ruby template library or a different
JavaScript library. So the components below aren’t always 100%

19

http://localhost:3001

required for applications that customize heavily. Curious what you
can customise? Type "rails --help" to check.

Below are the basic Rails gems — the declared dependencies of
Rails itself.

• ActiveSupport is a compatibility library including methods
that aren't necessarily specific to serving web applications.
You'll see ActiveSupport used by non-Rails, non-web libraries
because it contains such a lot of useful baseline functionality.
ActiveSupport includes methods for changing words from
single to plural, or CamelCase to snake_case. It also includes
significantly better time and date support than the Ruby
standard library.

• ActiveModel is how Rails handles persistence and models, but
doesn’t require that the persistence use a database. For
instance, if you want a URL for a given model, ActiveModel
helps you there, even if the model is in memory, on disk or in
non-SQL storage like Redis.

• ActiveRecord is an Object-Relational Mapper (ORM). That
means that it maps between Ruby objects and tables in a SQL
database. When you query from or write to the SQL database
in Rails, you do it through ActiveRecord. ActiveRecord also
implements ActiveModel. ActiveRecord supports PostgreSQL,
MySQL and SQLite, plus JDBC, Oracle and many others.

• ActionPack does routing - the mapping of an incoming URL to
a controller action in Rails. It also sets up your controllers and
views, and shepherds a request through its controller action.
ActionPack uses Rack quite a bit.

• ActionView renders template files, which eventually become
the final HTML. The template rendering is done through an
external gem like Erubis (for Erb) or Haml. ActionView also

20

handles action- or view-centred functionality like view
caching.

• ActionMailer is used to send out email, especially email based
on templates. It works a lot like you'd hope Rails email would,
with controllers, actions and views - it's just that the views are
email, not web content.

• ActiveJob is for job queueing. Not everything in your web app
can or should be done instantly in response to an HTML
request. Slow batch jobs, sending email and running long
command-line processes all want to be done separately from
your web server. ActiveJob is a compatibility layer around
many other gems for this purpose such as Resque, Sidekiq or
DelayedJob.

• ActionCable sets up a persistent connection between a
rendered web page and your server. “Classic” HTTP requests
are transactional - your browser requests a page, your server
sends it back and you’re done. HTTP extensions like AJAX,
Server-Sent Events (SSEs) and WebSockets blur this line by
letting your rendered page keep communicating with the
server after they’re rendered. It’s used for realtime data
updates, chat servers, event polling and many other things.
ActionCable manages this multi-request connection for your
Rails app.

Some of what you built in this chapter was in your application
directory, not in Rulers. Go ahead and make a new Rails app -
type "rails new test_app". If you look in config/application.rb,
you'll see Rails setting up a Rails Application object, a lot like your
Rulers Application object. You'll also see Rails' config.ru file,
which looks a lot like yours. Right now is a good time to poke
through the config directory and see what a Rails application sets

21

up for you by default. Do you see anything that now makes more
sense?

Not In Rails, But...

When you made your gem, a recent version of Bundler would not
put Gemfile.lock into .gitignore. Any recent Bundler is of the
opinion that gems should check their Gemfile.lock into Git. That's
not how it's always been done. You can see Bundler's thinking on
that at https://bundler.io/blog/2018/01/17/making-gem-
development-a-little-better.html.

22

https://bundler.io/blog/2018/01/17/making-gem-development-a-little-better.html
https://bundler.io/blog/2018/01/17/making-gem-development-a-little-better.html
https://bundler.io/blog/2018/01/17/making-gem-development-a-little-better.html

Exercises

Exercise One: Reloading Rulers

Let's add a bit of debugging to the Rulers framework.

rulers/lib/rulers.rb
module Rulers
 class Application
 def call(env)
 `echo debug > debug.txt`;
 [200, {'Content-Type' => 'text/html'},
 ["Hello from Ruby on Rulers!"]]
 end
 end
end

When this executes, it should create a new file called debug.txt in
best_quotes, where you ran rackup .

Try restarting your server and reloading your browser at "http://
localhost:3001". But you won't see the debug file!

Try rebuilding the gem and reinstalling it (gem build rulers; gem
install rulers-0.0.1.gem). Reload the browser. You still won't see it.
Finally, restart the server again and reload the browser. Now you
should finally see that debug file.

Rails and Rulers can both be hard to debug. In chapter 3 we'll look
at Bundler’s :path option as a way to make it easier. For now you'll
need to reinstall the gem and restart the rack server before your
new Rulers code gets executed. When the various conveniences
fail, you’ll know how to do it the old-fashioned way.

23

http://localhost:3001
http://localhost:3001

Exercise Two: Your Library’s Library

You can begin a simple library of reusable functions, just like
ActiveSupport. When an application uses your Rulers gem and
then requires it ("require rulers"), the application will
automatically get any methods in that file. Try adding a new file
called lib/rulers/array.rb, with the following:

rulers/lib/rulers/array.rb
class Array
 def deeply_empty?
 empty? || all?(&:empty?)
 end
end

This is a silly method - it returns true if the Array is empty (just [])
or if it contains only objects that return true for ‘empty?’ like {} or
[] or "". Despite the name it will not return true for something
like ["", ["", ""], {}] because that middle array returns true for
deeply_empty? but not for plain empty?. You could fix this with
more complexity.

Have you seen “&:” before? It’s a fun trick. “:blank?” means “the
symbol blank?” just like “:foo” means “the symbol foo.” The “&”
means “pass as a block” -- so pass that symbol as if it were a code
block in curly-braces that you’d pass to ‘all?’. So you’re passing a
symbol as if it were a block. Ruby knows to convert a symbol into
a proc that calls the method of the same name. When you do that
with “plus”, you get “add these together" since that's what the
method named "+" does.

Now add “require "rulers/array"” to the top of lib/rulers.rb. That
will include it in all Rulers apps.

24

You’ll need to go into the rulers directory and “git add .” before you
rebuild the gem (git add .; gem build rulers.gemspec; gem install
rulers-0.0.1.gem). That’s because rulers.gemspec is actually calling
git to find out what files to include in your gem. Have a look at
this line from rulers.gemspec:

spec.files = `git ls-files -z`.split("\x0")

“git ls-files” will only show files git knows about -- the split is just
to get the individual lines of output. If you create a new file, be
sure to “git add .” before you rebuild the gem or you won’t see it!

Now with your new rulers/array.rb file, any application including
Rulers will be able to write [[], []].deeply_empty? and have it check.
Go ahead, add a few more methods that could be useful to the
applications that will use your framework.

What’s useful? Rails defines methods like “present?” and “blank?”
this way. In general, ActiveSupport is a great place to look for
what kind of monkeypatching Rails does — there’s a lot of it.

Exercise Three: Test Early, Test Often

Since we’re building a Rack app, the rack-test gem is a convenient
way to test it. Let’s do that.

Add rack-test as a development (not runtime) dependency to your
gemspec. If Minitest isn't there already, add that too:

rulers/rulers.gemspec, near the bottom
 # ...
 spec.add_runtime_dependency "rack"
 spec.add_development_dependency "rack-test"
 spec.add_development_dependency "minitest"

25

end

(With newer Bundler, remember to use add_dependency rather
than add_runtime_dependency.)

Why use the Gemspec when you have a Gemfile? The gemspec is
taken into account by apps and libraries that depend on your gem,
so it’s necessary if other apps use your library. It's also where
people look, for gems, since most of the dependencies have to be
in the gemspec.

Now run “bundle install” to make sure you’ve installed rack-test.
We’ll add one usable test for Rulers. Later you’ll write more.

Make a test directory:

From rulers directory
> mkdir test

Now we’ll create a test helper:

rulers/test/test_helper.rb
$LOAD_PATH.unshift File.expand_path("../../lib",
 __FILE__)
require "rulers"
require "rack/test"

require "minitest/autorun"

The only surprising thing here should be the $LOAD_PATH
magic. It makes sure that requiring “rulers” will require the local

26

one in the current directory rather than, say, the one you installed
as a gem. It does that by unshifting (prepending) the local path so
it’s checked before anything else in $LOAD_PATH.

We also do an expand_path so that it’s an absolute, not a relative
path. That’s important if anything might change the current
directory.

Testing a different local change to a gem you have installed can be
annoying -- what do you have installed? What’s being used? By
explicitly prepending to the load path, you can be sure that the
local not-necessarily-installed version of the code is used first and
it doesn't matter what version you have installed.

Now you’ll need a test, which we’ll put in application_test.rb:

rulers/test/application_test.rb
require_relative "test_helper"

class TestApp < Rulers::Application
end

class RulersAppTest < Minitest::Test
 include Rack::Test::Methods

 def app
 TestApp.new
 end

 def test_request
 get "/"

 assert last_response.ok?
 body = last_response.body

27

 assert body["Hello"]
 end

end

The require_relative just means “require, but check from this
file’s directory, not the load path”. It’s a fun, simple trick.

This test creates a new TestApplication class, creates an instance,
and then gets “/” on that instance. It checks for error with
“last_response.ok?” and that the body text contains “Hello”.

To run the test, type “ruby test/application_test.rb”. It should run
the test and display a message like this:

Running tests:

.

Finished tests in 0.007869s, 127.0810 tests/s,
254.1619 assertions/s.

1 tests, 2 assertions, 0 failures, 0 errors, 0
skips

The line “get “/”” above can be “post “/my/url”” if you prefer, or
any other HTTP method and URL.

Now, write at least one more test.

Exercise Four: Other Application Servers

When you run “rackup,” you’re seeing “WEBRick” in the output.
That's the name of Ruby’s built-in web server. It’s not something

28

you’d want to use in production, but it’s kind of cool that it’s there
automatically.

For a real application in production, you’ll use a real application
server, plus NGinX or Apache set up as a reverse proxy.

A “real” application server would be something like Passenger,
Puma, Unicorn or Thin. All of them use Rackup files just like you
have been here. For instance, to run Unicorn with your code,
install Unicorn (“gem install unicorn”) and then run it:

At the console:
unicorn -p 3001

Like “rackup”, Unicorn will automatically look for config.ru and
you can tell it what port number to use. The other application
servers are similar — if you set them up, they know how to use a
config.ru file without a problem.

From here on out, if I tell you to run “rackup” you can install and
use an app server of your choice. Everything in this book should
work just fine with any application server you choose.

Exercise Five: Ignoring Files

When you ran "bundle gem rulers", it provided a
reasonable .gitignore. It doesn't have absolutely everything you
need, but it's not bad.

However, when you build gems, you get a .gem file that Git wants
to check in. Ordinarily you do not want to check it in.

The best way to handle that is to add a line to the end of
the .gitignore file, telling Git not to add it. For me, that line might
look like:

29

http://config.ru
http://config.ru

rulers-*.gem

Add a line to the .gitignore file to keep yourself from accidentally
checking in .gem files.

30

2. Your First Controller
In this chapter you'll write your very first controller and start to
see how Rails routes a request.

You already have a very basic gem and application, and the gem is
installed locally. If you don't, or if you don't like the code you
wrote in the first chapter, you can download the sample source.

We'll bump up the gem version by 1 for every chapter of the book.
If you're building the code on your own, you can do this or not.

To change the gem version, open up rulers/lib/rulers/version.rb
and change the constant from "0.0.1" to "0.0.2". Next time you
reinstall your gem, you'll need to type "gem build rulers.gemspec;
gem install rulers-0.0.2.gem". You should delete rulers/
rulers-0.0.1.gem, just so you don't install and run old code by
mistake.

You may also need to "bundle update rulers" in best_quotes.

Sample Source

Sample source for all chapters is on GitHub:

http://github.com/noahgibbs/rulers

http://github.com/noahgibbs/best_quotes

Once you’ve cloned the repositories, in EACH directory do “git
checkout -b chapter_2_mine chapter_2” to create a new branch
called “chapter_2_mine” for your commits.

31

http://github.com/noahgibbs/rulers
http://github.com/noahgibbs/best_quotes

On the Rack

Last chapter’s big return values for Rack can take some
explaining. So let’s do that. Here’s one:

[200, {'Content-Type' => 'text/html'},
 ["Hello!"]]

Let’s break that down. The first number, 200, is the HTTP status
code. If you returned 404 then the web browser would show a 404
message -- page not found. If you returned 500, the browser
should say that there was a server error.

The next hash is the headers. You can return all sorts of headers
to set cookies, change security settings and many other things.
The important one for us right now is ‘Content-Type’, which must
be ‘text/html’. That just lets the browser know that we want the
page rendered as HTML rather than text, JSON, XML, RSS or
something else.

And finally, there’s the content. In this case we have only a single
part containing a string. So the browser would show “Hello!”

Soon we’ll examine Rack’s “env” object, which is a hash of
interesting values. For now all you need to know is that one of
those values is called PATH_INFO, and it’s the part of the URL
after the server name but minus the query parameters, if any.
That’s the part of the URL that tells a Rails application what
controller and action to use.

Routing Around

A request arrives at your web server or application server. Rack
passes it through to your code. Rulers will need to route the

32

request -- that means it takes the URL from that request and
answers the question, "what controller and what action handle
this request?" We're going to start with very simple routing.

Specifically, we’re going to start with what was once Rails’ default
routing. URLs of the form “http://host.com/category/action” will
be routed to CategoryController#action.

Under "rulers", open lib/rulers.rb.

rulers/lib/rulers.rb
require "rulers/version"
require "rulers/routing"

module Rulers
 class Application
 def call(env)
 klass, act = get_controller_and_action(env)
 controller = klass.new(env)
 text = controller.send(act)
 [200, {'Content-Type' => 'text/html'},
 [text]]
 end
 end

 class Controller
 def initialize(env)
 @env = env
 end

 def env
 @env
 end
 end

33

http://host.com/category/action

end

Our Application#call method is now getting a controller and
action from the URL and then making a new controller and
sending it the action. With a URL like “http://mysite.com/
people/create”, you’d hope to get PeopleController for klass and
“create” for the action. We’ll make that happen in rulers/
routing.rb, below.

The controller just saves the environment we gave it. We’ll use it
later.

Now in lib/rulers/routing.rb:

rulers/lib/rulers/routing.rb
module Rulers
 class Application
 def get_controller_and_action(env)
 _, cont, action, after =
 env["PATH_INFO"].split('/', 4)
 cont = cont.capitalize # "People"
 cont += "Controller" # "PeopleController"

 [Object.const_get(cont), action]
 end
 end
end

This is very simple routing, so we’ll just get a controller and action
as simply as possible. We split the URL on “/”. The “4” just means
“split no more than 4 times”. So the split assigns an empty string
to “_” from before the first slash, then the controller, then the
action, and then everything else un-split in one lump. For now we

34

http://mysite.com/people/create
http://mysite.com/people/create

throw away everything after the second “/” - but it’s still in the
environment, so it’s not really gone.

The method “const_get” is a piece of Ruby magic - it just means
look up any name starting with a capital letter - in this case, your
controller class.

Also, you’ll sometimes see the underscore used to mean “a value I
don’t care about”, as I do above. It’s actually a normal variable
and you can use it however you like, but many Rubyists like to use
it to mean “something I’m ignoring or don’t want.”

Now you’ll make a controller in best_quotes. Under app/
controllers, make a file called quotes_controller.rb:

best_quotes/app/controllers/quotes_controller.rb
class QuotesController < Rulers::Controller
 def a_quote
 "There is nothing either good or bad " +
 "but thinking makes it so."
 end
end

That looks like a decent controller, even if it’s not quite like Rails.
You’ll need to add it to the application manually since you haven’t
added magic Rails-style autoloading for your controllers yet. So
open up best_quotes/config/application.rb. You’re going to add
the following lines after “require 'rulers'” and before declaring your
app:

best_quotes/config/application.rb (excerpt)
$LOAD_PATH << File.join(File.dirname(__FILE__),
 "..", "app",

35

 "controllers")
require "quotes_controller"

The LOAD_PATH line lets you load files out of “app/controllers”
just by requiring their name, as Rails does. And then you require
your new controller.

Now, go to the rulers directory and type “git add .; gem build
rulers.gemspec; gem install rulers-0.0.2.gem”. Then under
best_quotes, type “rackup -p 3001”. Finally, open your browser to
“http://localhost:3001/quotes/a_quote”.

If you did everything right, you should see a quote from Hamlet.
And you’re also seeing the very first action of your very first
controller.

If you didn’t quite get it, please make sure to include “quotes/
a_quote” in the URL, like you see above -- just going to the root
no longer works. If you see "Uninitialised constant Controller"
then your URL is probably off.

It Almost Worked!

Now, have a look at the console where you ran rackup. Look up
the screen. See that error? It’s possible you won’t on some
browsers, but it’s likely you have an error like this:

NameError: wrong constant name
Favicon.icoController
 .../gems/rulers-0.0.3/lib/rulers/routing.rb:9:in
`const_get'
 .../gems/rulers-0.0.3/lib/rulers/routing.rb:9:in
`get_controller_and_action'
 .../gems/rulers-0.0.3/lib/rulers.rb:7:in `call'

36

http://localhost:3001/quotes/a_quote

 .../gems/rack-1.4.1/lib/rack/lint.rb:48:in
`_call'
 (...more lines...)
127.0.0.1 - - [21/Feb/2012 19:46:51] "GET /
favicon.ico HTTP/1.1" 500 42221 0.0092

You’re looking at an error from the browser fetching a file... Hm...
Check that last line... Yup, favicon.ico. Most browsers do this
automatically. Eventually we’ll have our framework or our web
server take care of serving static files like this. But for now, we’ll
cheat horribly.

Open up rulers/lib/rulers.rb, and have a look at
Rulers::Application#call. We can just check explicitly for
PATH_INFO being /favicon.ico and return a 404:

rulers/lib/rulers.rb
module Rulers
 class Application
 def call(env)
 if env['PATH_INFO'] == '/favicon.ico'
 return [404,
 {'Content-Type' => 'text/html'}, []]
 end

 klass, act = get_controller_and_action(env)
 controller = klass.new(env)
 text = controller.send(act)
 [200, {'Content-Type' => 'text/html'},
 [text]]
 end

37

 end

A horrible hack? Definitely. For now, that will let you see your
real errors without gumming up your terminal with unneeded
ones.

Review

You’ve just set up very basic routing, and a controller action that
you can route to. If you add more controller actions, you get more
routes. Rulers 0.0.2 would be just barely enough to set up an
extremely simple web site. We’ll add much more as we go along.

You’ve learned a little more about Rack -- see the “Rails” section
of this chapter for even more. You’ve also seen a little bit of Rails
magic with LOAD_PATH and const_get, both of which we’ll see
more of later.

Exercises

Exercise One: Debugging the Rack Environment

Open app/controllers/quotes_controller.rb, and change it to this:

best_quotes/app/controllers/quotes_controller.rb
class QuotesController < Rulers::Controller
 def a_quote
 "There is nothing either good or bad " +
 "but thinking makes it so." +
 "\n<pre>\n#{env}\n</pre>"
 end
end

38

Now restart the server -- you don’t need to rebuild the gem if you
just change the application. Reload the browser, and you should
see a big hash table full of interesting information. It should look
very roughly like this:

{"GATEWAY_INTERFACE"=>"CGI/1.1", "PATH_INFO"=>"/
quotes/a_quote", "QUERY_STRING"=>"",
"REMOTE_ADDR"=>"127.0.0.1",
"REMOTE_HOST"=>"localhost",
"REQUEST_METHOD"=>"GET", "REQUEST_URI"=>"http://
localhost:3001/quotes/a_quote", "SCRIPT_NAME"=>"",
"SERVER_NAME"=>"localhost", "SERVER_PORT"=>"3001",
"SERVER_PROTOCOL"=>"HTTP/1.1",
"SERVER_SOFTWARE"=>"WEBrick/1.3.1 (Ruby/
1.9.3/2012-11-10)", "HTTP_HOST"=>"localhost:3001",
"HTTP_CONNECTION"=>"keep-alive",
"HTTP_CACHE_CONTROL"=>"max-age=0",
"HTTP_USER_AGENT"=>"Mozilla/5.0 (Macintosh; Intel
Mac OS X 10_6_8) AppleWebKit/537.11 (KHTML, like
Gecko) Chrome/23.0.1271.64 Safari/537.11",
"HTTP_ACCEPT"=>"text/html,application/
xhtml+xml,application/xml;q=0.9,*/*;q=0.8",
"HTTP_ACCEPT_ENCODING"=>"gzip,deflate,sdch",
"HTTP_ACCEPT_LANGUAGE"=>"en-US,en;q=0.8",
"HTTP_ACCEPT_CHARSET"=>"ISO-8859-1,utf-8;q=0.7,*;q=
0.3", "rack.version"=>[1, 1], "rack.input"=>#>,
"rack.errors"=>#>>, "rack.multithread"=>true,
"rack.multiprocess"=>false, "rack.run_once"=>false,
"rack.url_scheme"=>"http", "HTTP_VERSION"=>"HTTP/
1.1", "REQUEST_PATH"=>"/quotes/a_quote"}

39

http://localhost:3001/quotes/a_quote
http://localhost:3001/quotes/a_quote

That looks like a lot, doesn’t it? It’s everything your application
gets from Rack. When your Rails controller uses accessors like
“post?”, it’s checking the Rack environment to figure that out. You
could easily add your own "post?" method to Rulers by checking
whether env[“REQUEST_METHOD”] == “POST”.

Better yet, you can now see everything that Rails has to work with.
Everything that Rails knows about the request is extracted from
this same hash.

Exercise Two: Debugging Exceptions

Let’s add a new action to our controller that raises an exception:

best_quotes/app/controllers/quotes_controller.rb
class QuotesController < Rulers::Controller
 def exception
 raise "It's a bad one!"
 end
end

Re-run rackup. Go to “http://localhost:3001/quotes/exception” in
your browser, which should raise an exception. You should see a
prettily-formatted page saying there was a RuntimeError at /
quotes/exception. The page should also have a big stack trace.

In chapter 8 we’ll look deeply into Rack middleware and why
you’re seeing that. That page isn't built into your browser. You can
turn it off by setting RACK_ENV to production in your
environment. It’s a development-only Rack debugging tool that
you’re benefiting from.

However, you don’t have to use it. You could add a begin/rescue/
end block in your Rulers application request and then decide what
to do with exceptions. Then Rack wouldn't do it for you.

40

http://localhost:3001/quotes/exception

Go into rulers/lib/rulers.rb and in your call method, add a begin/
rescue/end around the controller.send() call. Now you have to
decide what to do if an exception is raised -- you can start with a
simple error page, or a custom 500 page, or whatever you like. Go
to the page again in your browser and make sure you see the page
you just added.

What else can your framework do with errors?

Exercise Three: Roots and Routes

It’s inconvenient that you can’t just go to “http://localhost:3001”
any more and see if things are working. Getting an exception
doesn’t tell you if you broke anything.

Open rulers/lib/rulers.rb in your text editor. Beneath the check
for favicon.ico, you can add a check to see if PATH_INFO is just
“/”.

First, return “/quotes/a_quote” if PATH_INFO is "/". Test in your
browser. Then remove that, and instead try one of the following:

• Return the contents of a known file -- maybe public/index.html?

• Look for a HomeController and its index action.

• Extra credit: try a browser redirect. This requires returning a
code other than 200 or 404 and setting some headers.

In chapter 9 we’ll build a much more configurable router, more
like how Rails does it. Until then, you'll have a few hacks built into
your framework.

In Rails

ActionPack in Rails includes the controllers. Rails also has an
ApplicationController which inherits from its controller base

41

http://localhost:3001

class, and then each individual controller inherits from that. Your
framework could do that too!

Different Rails versions had substantially different default
routing. You can read about the current one in “Rails Routing
from the Outside In”: “http://guides.rubyonrails.org/
routing.html”. Your current routing is similar to old-style Rails 1
and 2 routing. Those Rails versions would automatically look up a
controller and action without you specifying the individual routes.
That’s not great security, but it’s very friendly to beginners just
picking up your framework. Recent Rails routes aren't quite the
same - they make you declare everything explicitly.

Rails encapsulates the Rack information into a “request” object
rather than just including the hash right into the controller. That’s
a good idea when you want to abstract it a bit -- normalise values
for certain variables, for instance, or read and set cookies to store
session data. In chapter 6 you’ll see how to make Rulers do it too.
Rails also uses Rack under the hood, so it’s doing it the same way
you are.

Rack is a simple CGI-like interface. There’s less to it than you’d
think. If you’re curious, have a look at the Rack spec at “https://
github.com/rack/rack/blob/main/SPEC.rdoc” for all the details.
It’s a little hard to read, but it can tell you everything you need to
know.

You’ll learn more about Rack as we go along, especially in
chapters 6 and 9. But for the impatient, Rails includes a specific
guide to how it uses Rack: “http://guides.rubyonrails.org/
rails_on_rack.html”. It’s full of things you can add to your own
framework. Some of those tricks will be added in later chapters of
this book.

42

http://guides.rubyonrails.org/routing.html
http://guides.rubyonrails.org/routing.html
https://github.com/rack/rack/blob/main/SPEC.rdoc
https://github.com/rack/rack/blob/main/SPEC.rdoc
http://guides.rubyonrails.org/rails_on_rack.html
http://guides.rubyonrails.org/rails_on_rack.html

3. Rails Automatic Loading
If you’ve used Rails much, it probably struck you as odd that you
had to require your controller file. And that you had to restart the
server repeatedly. In fact, all kinds of “too manual.” What’s up
with that?

Rails loads files for you when it sees something it thinks it
recognises. If it sees BoboController and doesn’t have one yet it
loads “app/controllers/bobo_controller.rb”. We’re going to
implement that in Rulers in this chapter.

You may already know about Ruby’s method_missing. When you
call a method that doesn’t exist on an object, Ruby tries calling
“method_missing” instead. That lets you make methods with
unusual names that don't explicitly exist in a .rb file.

It turns out that Ruby also has const_missing, which does the
same thing for constants that don’t exist. Class names in Ruby are
just constants. Hmm...

Sample Source

Sample source for all chapters is on GitHub:

http://github.com/noahgibbs/rulers

http://github.com/noahgibbs/best_quotes

Once you’ve cloned the repositories, in BOTH rulers and
best_quotes type “git checkout -b chapter_3_mine chapter_3” to
create a new branch called “chapter_3_mine” for your commits.

Where’s My Constant?
First, let’s see how const_missing works.

43

http://github.com/noahgibbs/rulers
http://github.com/noahgibbs/best_quotes

Try putting this into a file called const_missing.rb and running it:

some_directory/const_missing.rb
class Object
 def self.const_missing(c)
 STDERR.puts "Missing constant: #{c.inspect}!"
 end
end

Bobo

When you run it, you should see “Missing constant: :Bobo”. So
that that means Bobo was used but not loaded. That seems
promising. But we still get an error.

By the way -- I'll use "STDERR.puts" repeatedly instead of just
"puts". When debugging or printing error messages I like to use
STDERR because it’s a bit harder to redirect than a normal “puts”.
You’re more likely to see your message even when using a log file,
background process or similar.

You’ll also see a lot of “inspect” in my code. For simple structures,
“inspect” shows them exactly as you’d type them into Ruby --
strings with quotes, numbers bare, symbols with a leading colon
and so on. It’s great to train yourself to use "STDERR.puts" and
“inspect” every time you’re debugging. When you have a problem
where something is the wrong type, inspect will show you exactly
what’s wrong. And STDERR.puts will make sure you always see
the message. Make them a habit now!

Try creating another file, this one called bobo.rb, next to
const_missing.rb. It should look like this:

44

some_directory/bobo.rb
class Bobo
 def print_bobo
 puts "Bobo!"
 end
end

Pretty simple. Let’s change const_missing.rb:

Enjoying the book? You can purchase the
full version from “http://rebuilding-rails.com”.
Youʼve read 45 pages for free. The full
version is over 180. With more topics, more
exercises and an even deeper
understanding of Rails, how can you lose?
Each chapter can be read separately, and
you can download starter source for any
chapter.

On the fence? Check the contents at “http://
rebuilding-rails.com/book_toc.html”. If you
like what youʼve read so far, thereʼs even
better stuff ahead.

45

http://rebuilding-rails.com
http://rebuilding-rails.com/book_toc.html
http://rebuilding-rails.com/book_toc.html

Answers to Exercises
The exercises start simple and well-defined, and get more open-
ended as you go along. That’s on purpose, and I think it’s a very
good thing. As a result you may disagree with some of my
answers, especially later on. And you certainly may have a
different answer.

Good! Programming, Rails and you are all changing over time. It’s
a very good thing that we don’t all agree on everything.

These are some answers. I think they’re good answers. But don’t
take them too seriously as the only right answers.

Chapter 1

Exercise One: just type the code as written and run it.

Exercise Two: just type the code as written and run it.

Exercise Three: after typing the code as written and running it,
add another test. That can be as simple as copying the
test_request method, changing the name, and changing the get to
“/my/url”. For now it doesn’t matter what URL you use since the
application doesn’t check it.

Chapter 2

Exercise One: run the code given, then look over the hash.
What’s different from the one I gave? You’ll be using a different
version of Rack, a different browser and probably other things.
What isn’t the same as the hash I gave?

Exercise Two: Follow the steps as written. To return a custom
500 page, you can just return the text of it, or return

46

File.read(“path/to/my/500page”). Another thing you could do on
error would be to take the current context (request data, call
stack, etc.) and save it to a file in /tmp. It would even be possible
to save that data in the framework in an array or hash, though
you’d have to figure out how to retrieve it. You can get the current
call stack by calling the “caller” method, which returns an array of
strings.

Exercise Three: The check for a URL of “/“ in
Rulers::Application#call is straightforward:

module Rulers
 class Application
 def call(env)
 if env['PATH_INFO'] == '/favicon.ico'
 return [404,
 {'Content-Type' => 'text/html'}, []]
 end

 # -> Here it is <-
 if env['PATH_INFO'] == '/'
 return [200,
 {'Content-Type' => 'text/html'},
 [File.read "public/index.html"]]
 end

 klass, act = get_controller_and_action(env)
 # ...
 end
 end
end

The version above returns the contents of public/index.html. You
can return the controller and action by calling the same code as
below for the given controller, or by resetting env. For instance,

47

inside the if statement you could write “env = { ‘PATH_INFO’ =>
‘/home/index.html' } and not return, thus allowing the later code
to treat that as the URL.

For a redirect, you’ll need to return a status of 301 or 302 instead
of 200. And where you currently return the Content-Type header,
you’ll want to return something like “{ ‘Location' => ‘/home/
index.html’ }”. With a redirect, the client reads the Location
header to find out where to redirect to.

48

Appendix: Installing Ruby, Git,
Bundler and SQLite3
Ruby

Any recent version of Ruby should be fine. You're welcome to
install it through RVM or ruby-build. But they can be
complicated, so I’m not recommending that if you don’t already.

Windows

To install Ruby on Windows, go to http://rubyinstaller.org/, hit
“download”, and choose a recent version. This should download
an EXE to install Ruby.

Mac OS X

To install Ruby on Mac OS X, you can first install Homebrew
(“http://mxcl.github.com/homebrew/”) and then “brew install
ruby”. For other ways, you can Google “mac os x install ruby”.

Ubuntu Linux

To install Ruby on Ubuntu Linux , use apt-get:

> sudo apt-get install ruby-dev

This should install Ruby.

Others

Google for “install Ruby on <my operating system>”. If you’re
using an Amiga, email me!

49

http://rubyinstaller.org/
http://mxcl.github.com/homebrew/

Git (Source Control)

Windows

To install git on Windows, we recommend GitHub’s excellent
documentation with lots of screenshots: “http://
help.github.com/win-set-up-git/”. It will walk you through
installing msysgit (“http://code.google.com/p/msysgit/”), a git
implementation for Windows.

Mac OS X

To install git on Mac OS X if you don't have it, download and
install the latest version from “http://git-scm.com/”. You won’t
see an application icon for git, which is fine - it’s a command-line
application that you run from the terminal. You can also install
through Homebrew.

Ubuntu Linux

To install git on Ubuntu Linux, use apt.

> sudo apt-get install git-core

Often you’ll already have it, though.

Others

Google for “install git on <my operating system>”.

Bundler

Bundler is a gem that Rails uses to manage all the various Ruby
gems that a library or application in Ruby uses these days. The

50

http://help.github.com/win-set-up-git/
http://help.github.com/win-set-up-git/
http://code.google.com/p/msysgit/
http://git-scm.com

number can be huge, and there wasn’t a great way to declare them
before Gemfiles, which come from Bundler.

To install bundler:

> gem install bundler
Fetching: bundler-1.1.17.gem (100%)
Successfully installed bundler-1.1.17
1 gem installed

Other gems will be installed via Bundler later. It uses a file called
a Gemfile that just declares what gems your library or app uses,
and where to find them.

SQLite

Windows

Go to sqlite.org. Pick the most recent stable version and scroll
down until you see “Precompiled Binaries for Windows”. There is
a This is what you’ll be using.

Mac OS X

Mac OS X ships with SQLite3. If the SQLite3 gem is installed
correctly, Ruby should use it without complaint.

Ubuntu Linux

You’ll want to use apt-get (or similar) to install SQLite. Usually
that’s:

> sudo apt-get install sqlite3 libsqlite3-dev

51

Others

Google for “install sqlite3 on <my operating system>”.

Other Rubies

If you’re adventurous, you know about other Ruby
implementations (e.g. JRuby, Rubinius). You may need to adjust
some specific code snippets if you use one.

52

	0. Rebuilding Rails for Yourself
	Why Rebuild Rails?
	Who Should Rebuild Rails?
	Working Through
	Books vs Videos
	Cheating

	0.5 Getting Set Up
	1. Zero to “It Works!”
	In the Rough
	Hello World, More or Less
	Making Rulers Use Rack
	Review
	In Rails
	Not In Rails, But...
	Exercises
	Exercise One: Reloading Rulers
	Exercise Two: Your Library’s Library
	Exercise Three: Test Early, Test Often
	Exercise Four: Other Application Servers
	Exercise Five: Ignoring Files

	2. Your First Controller
	Sample Source
	On the Rack
	Routing Around
	It Almost Worked!
	Review
	Exercises
	Exercise One: Debugging the Rack Environment
	Exercise Two: Debugging Exceptions
	Exercise Three: Roots and Routes
	In Rails

	3. Rails Automatic Loading
	Sample Source

	Answers to Exercises
	Chapter 1
	Chapter 2

	Appendix: Installing Ruby, Git, Bundler and SQLite3
	Ruby
	Windows
	Mac OS X
	Ubuntu Linux
	Others
	Git (Source Control)
	Windows
	Mac OS X
	Ubuntu Linux
	Others
	Bundler
	SQLite
	Windows
	Mac OS X
	Ubuntu Linux
	Others
	Other Rubies

