
Hastur: Open-Source Scalable
Metrics with Cassandra

Noah Gibbs | August 8, 2012

Hashtag #cassandra12

@codefolio

noah@ooyala.com

http://github.com/ooyala/hastur-server

http://twitter.com/codefolio
http://twitter.com/codefolio
http://twitter.com/codefolio
http://twitter.com/codefolio
http://twitter.com/codefolio
http://twitter.com/codefolio

Hastur

What is Hastur? Quick Intro.

What Cassandra Schema? In Depth.

What’s In Progress?

2

In this Talk:

3

Hastur Live Dashboard

4

Hastur Live Dashboard

Bindings for D3, Cubism and Rickshaw. Easy to support
other JavaScript graphing libs. The JavaScript directly

queries Hastur’s REST retrieval service.

5

Hastur Live Dashboard

Hastur

Metrics, like StatsD and Graphite

CollectD-Style System Statistics

REST Interface, JS Dashboards

Replicated, Fault-Tolerant, Scalable

6

Hastur

High, Unpredictable Write Volume

Varying Schema, Variable Msg Size

2 Types of Series - Data, Lookups

All time-series, even metadata - no
supplemental DB

7

Cassandra Challenges:

8

{
 "type": "gauge",
 "uuid": "91c61ff0-8740-012f-e54a-64ce8f3a9dc2",
 "name": "authserver.request.latency",
 "value": 0.3714,
 "timestamp": 1329858724285438,
 "labels": {
 "app": "authserver",
 "pid": 138423,
 "req_type": "anon_user"
 }
}

Sample Hastur Message

Fields vary
by msg type

Arbitrary per-
msg labels

9

Host

App 1 App 3

Per-Host Agent

Stats over local
UDP (reliable)

Stats over ZeroMQ
(redundant, failover)

App 2

10

Host

ZeroMQ Routing

Host

Host

Host

Host

Cassandra Sinks

11

Sinks

Messages

Registrations-Aug 8th (Low Granularity)

Gauges-3:05pm (High Granularity)

12

Gauges-3:05pm (High Granularity)

This writes several things to several
different rows:

Location Value

5-min archive row JSON struct

5-min value row 0.3714 (latency value)

message names row authserver.request.latency

UUIDs row host’s UUID

app-name row app name, UUID

13

Columns and Comparators

Use reversed comparator - return most
recent first when limited.

Composite keys are great, but Ruby
support is mixed. We use Bytes.

Column keys make the easiest and
fastest indices.

Timestamp everything, modify nothing.

14

Messages, Values - Data Series

Row Key
91c61ff0-8740-012f-e54a-64ce8f3a9dc2-1329858600000000

UUID Timestamp, to 5
minutes precision

Different message types have different time intervals.
Stats are 5 minutes, low-frequency message types are up

to one day.

15

Messages, Values - Data Series

Column Key
authserver.request.latency-1329858617486194

Message name Timestamp (usec since epoch)
Stored as binary to save space

Column_slice allows searching by message
name or message prefix - e.g. “authserver.*”

16

Data Series

Row
(5 min)

auth.req.latency

auth.req.sql.queries

auth.req.db.latency

system.mem_free

This row contains all gauges (a statistic type) for this
host for this five minute period.

17

Data Series are Huge!

JSON gives great flexibility, easy labels

But data series are huge writing JSON!

Cass over Btrfs - compress w/LZO.

Repetitive JSON = huge compression!
Specific data on a later slide.

18

Lookup Series

Row Key

name-1329782400000000 Timestamp, truncated
to day

Look up message name, application name or UUID,
always per day.

app-name-1329782400000000

uuid-1329782400000000

19

Lookup Series

Column Key

For app name or UUID, just use the app name or UUID
itself as the column key.

That app name or UUID is written many times... Always
with no column value. Cassandra combines writes and

SSTables stay tiny.

The CF with all lookup tables is eleven MB on our
benchmark node. The data is 200GB.

20

Lookup Series

The Rebel: Message Names

authserver.request.latency-11-91c61ff0-8740-012f-e54a-64ce8f3a9dc2

Message name UUID
(stored as binary)Type ID (Gauge)

The message-name column ID is larger because you
need to know what column family to look in... Since
you can’t range-scan row keys, more info is needed.

21

No Cassandra Built-In Indices?

We range-scan almost everything to get double- and
triple-duty out of our indices. Cassandra built-in indices

aren’t bad, but they don’t do that.

22

No Cassandra Compression?

Built-in Cassandra compression claims to compress
across columns with identical names. All our data

columns are timestamped, so no two will ever have
identical names.

23

Numbers

“Benchmark” Cassandra node
Size: JSON vs Value

Size % of full size

Gauge JSON, raw 34 GB

Gauge values 14 GB 41%

Counter JSON, raw 100 GB

Counter values 23 GB 23%

Real Production Data

24

Numbers

Size % of full size

Cassandra Size 199 GB

On-Disk Size 111 GB 56%

Real Production Data

“Benchmark” Cassandra node
LZO Compression

25

Quick Summary: Future Directions

Automatic Retention Policy - Delete or
move to long-term S3 storage

Alerting - scan in arrival order, and
check automatic thresholds

On-Demand rollups instead of manual

Smart label queries - a huge job!

Questions?

26

github.com/ooyala/hastur-server

Thanks to Al Tobey, co-architect of
Hastur. Benchmark numbers are his!

http://twitter.com/codefolio
http://twitter.com/codefolio

THANK YOU

github.com/ooyala/
hastur-server (infrastructure)
hastur (ruby client)
hastur-c (C client)

@codefolio

noah@ooyala.com

#cassandra12

http://twitter.com/codefolio
http://twitter.com/codefolio
http://twitter.com/codefolio
http://twitter.com/codefolio
http://twitter.com/codefolio
http://twitter.com/codefolio
http://twitter.com/codefolio
http://twitter.com/codefolio

