
YJIT's Three Languages

Noah Gibbs, 2022
RubyConfTH

ruby.social/@codefolio

Multiple Representations, All At Once

First: Whoah

Who's This Guy?
• I work on YJIT at Shopify, especially speed.yjit.org

• I wrote the book Rebuilding Rails

• I'm writing Rebuilding HTTP

• Ask me for bear stickers

http://speed.yjit.org

I Love Questions
• This topic is complicated

• If you have a question, someone else does too

• Please ask, I'd love to answer it

• The worst that will happen is I'll say "I'm not answering
that today" or "wait for a later slide"

• There's no Q&A at the end - ask before the end!

Why Do We Care?
What's interesting about three languages?

A lot of software dev work is about keeping multiple
different-and-overlapping representations in your head.
YJIT is a great example.

What's YJIT?

YJIT, Briefly
• A Just-In-Time compiler, built into recent CRuby

• Makes frequently-used code fast by compiling to native
machine code

• Waits until runtime to see what code is used often, and
how it gets used

How YJIT Works
• At startup your code isn't compiled yet

• After 30 calls, YJIT compiles a specific method to
machine code and starts running it

• May switch between run and compile several times for
the same method

• Not concurrent - the process does one then the other,
one at a time

YJIT and Ruby, Dancing
When YJIT swaps back to the interpreter:

• a case it can't handle at compile time

• a case it can't handle at runtime ("side exit")

• assumptions break ("de-optimization")

YJIT uses CRuby's same runtime data and structures - it
has to, to swap constantly

A Little YJIT Theory

YJIT is Based on Lazy BBV
• Based on Maxime Chevalier-Boisvert's ECOOP 2015

whitepaper on Lazy Basic Block Versioning

• Divides methods into "basic blocks"; keeps context
about what type various data has

• Not Ruby-specific; initial implementation was Javascript

Methods
• YJIT compiles an ISEQ (usually a method) made of Basic

Blocks

• Each Basic Block is made of CRuby bytecodes.

• Curious how YJIT divides up a method into blocks? You can
ask a dev build of YJIT to disassemble.

puts RubyVM::YJIT.disasm(method :whatever_method)

Multiplicity:
Why Do We Care?

Software Dev: SO MANY Languages

• Your programming language is a language

• Your domain is a language

• APIs are tiny little languages too

• SQL, Javascript, CSS, Sass, TypeScript...

• A good developer has to juggle all this

Why Use YJIT as an Example?
• Obvious languages

• Concrete > Abstract

• Interesting mix

One Language:
Ruby Bytecode

How Ruby Bytecodes Work
• Ruby turns your code into bytecode, in multiple steps

• Ruby bytecode is a stack machine

• A Ruby bytecode instruction will pop its arguments
from the stack and then push the return value

• This is true whether or not you're using YJIT

A Bytecode Example
You can get a Ruby bytecode disassembly like this.

puts RubyVM::InstructionSequence.disassemble(method :whatever_method)

(This snippet is also at the resource url.)

A Bytecode Example
So let's do it:
puts RubyVM::InstructionSequence.disassemble(method :whatever_method)

def test(input)

 puts "Yes"

 if input

 puts "Well, maybe..."

 end

end

A Bytecode Example
Bytecode:

== disasm: #<ISeq:test@disassemble_test.rb:2 (2,0)-(7,3)> (catch: FALSE)

local table (size: 1, argc: 1 [opts: 0, rest: -1, post: 0, block: -1, kw: -1@-1, kwrest: -1])

[1] input@0<Arg>

0000 putself (3)[LiCa]

0001 putstring "Yes"

0003 opt_send_without_block <calldata!mid:puts, argc:1, FCALL|ARGS_SIMPLE>

0005 pop

0006 getlocal_WC_0 input@0 (4)[Li]

0008 branchunless 16

0010 putself (5)[Li]

0011 putstring "Well, maybe..."

0013 opt_send_without_block <calldata!mid:puts, argc:1, FCALL|ARGS_SIMPLE>

0015 leave (7)[Re]

0016 putnil (5)

0017 leave (7)[Re]

def test(input)

 puts "Yes"

 if input

 puts "Well, maybe..."

 end

end

YJIT Compiles Bytecodes
• Each bytecode turns into a chunk of machine code

• The chunks are mostly consecutive for a method

You're in luck right now. If you want to know more about bytecodes,
Kevin Newton is writing a whole series on them:

https://kddnewton.com/2022/11/30/advent-of-yarv-part-0.html

One Language:
YJIT's Context and IR

BBV and Context
• YJIT remembers types in a Context, such as whether a

variable is nil, true, false, String, Array, etc.

• Different Basic Blocks have different Contexts

• In some source code, a variable can have different
types on different successive calls and so each
different type can have its own Context ("chaining")

Context Example
A Context remembers types. What does that look like?

What type is this at compile-time? Might be unknown...

let val_type = ctx.get_opnd_type(insn_opnd);

What type is the top object on Ruby's stack?

let arg_type = ctx.get_opnd_type(StackOpnd(0))

We have proven this is a string with a runtime guard (or else we exited)

ctx.upgrade_opnd_type(insn_opnd, Type::CString);

Take a data entry off Ruby's internal stack, and keep track of its type and location

let recv = ctx.stack_pop(1);

IR -> Assembly
YJIT generates an Intermediate Representation (IR) and
then translates to x86_64 or AARCH64/ARM64 code.

// Conditionally move the length of the heap array
let flags_opnd = Opnd::mem((8 * SIZEOF_VALUE) as u8, array_reg, RUBY_OFFSET_RBASIC_FLAGS);
asm.test(flags_opnd, (RARRAY_EMBED_FLAG as u64).into());
let array_len_opnd = Opnd::mem(
 (8 * size_of::<std::os::raw::c_long>()) as u8,
 asm.load(array_opnd),
 RUBY_OFFSET_RARRAY_AS_HEAP_LEN,
);
let array_len_opnd = asm.csel_nz(emb_len_opnd, array_len_opnd);

Putting It Together

String Concatenation
fn jit_rb_str_concat(

 jit: &mut JITState,

 ctx: &mut Context,

 asm: &mut Assembler,

 ocb: &mut OutlinedCb,

 _ci: *const rb_callinfo,

 _cme: *const rb_callable_method_entry_t,

 _block: Option<IseqPtr>,

 _argc: i32,

 _known_recv_class: *const VALUE,

) -> bool {

String Concatenation
 // The << operator can accept integer codepoints for characters as the

 // argument. We only specially optimise string arguments.

 // If the peeked-at compile time argument is something other than a string,

 // assume it won't be a string later either.

 let comptime_arg = jit_peek_at_stack(jit, ctx, 0);

 if ! unsafe { RB_TYPE_P(comptime_arg, RUBY_T_STRING) } {

 return false;

 }

String Concatenation
 // Generate a side exit

 let side_exit = get_side_exit(jit, ocb, ctx);

 let arg_type = ctx.get_opnd_type(StackOpnd(0));

 // Pop arguments off Ruby's internal stack

 let concat_arg = ctx.stack_pop(1);

 let recv = ctx.stack_pop(1);

String Concatenation
 // If we're not compile-time certain that this will always be a string,

 // guard at runtime

 if arg_type != Type::CString && arg_type != Type::TString {

 let arg_opnd = asm.load(concat_arg);

 if !arg_type.is_heap() {

 asm.comment("guard arg not immediate");

 asm.test(arg_opnd, (RUBY_IMMEDIATE_MASK as u64).into());

 asm.jnz(side_exit.as_side_exit());

 asm.cmp(arg_opnd, Qfalse.into());

 asm.je(side_exit.as_side_exit());

 }

 guard_object_is_string(asm, arg_opnd, side_exit);

 }

String Concatenation

 asm.comment("<< on strings");

 let stack_ret = ctx.stack_push(Type::CString);

 let ret_opnd = asm.ccall(rb_str_buf_append as *const u8,

 vec![recv, concat_arg]);

 asm.mov(stack_ret, ret_opnd);

Once Again - Why?

The Power of Multiple
This kind of code gets its power from carefully thinking
through the different languages - runtime vs compile-
time, Ruby vs IR vs native.

Summary

How Far Along is YJIT?
• Pretty fast, pretty robust

• Latest speed results for x86 and ARM at speed.yjit.org

• Best for long-running code, not (e.g.) gem or bundle CLI

• "Limited production-ready"

• Extra-stability release with ARM support in Ruby 3.2.0

• Ruby 3.2.0 will be released 25th Dec, 2022

http://speed.yjit.org

References
• YJIT is part of the CRuby source code -

see https://github.com/ruby/ruby

• https://arxiv.org/abs/1411.0352 - Lazy BBV whitepaper

You can find various YJIT resources at
https://codefol.io/speaking/rubyconfth2022

https://arxiv.org/abs/1411.0352
https://codefol.io/speaking/rubyconfth2022

No Q&A, But...

Resource URL: https://codefol.io/speaking/rubyconfth2022

Mastodon: ruby.social/codefolio
https://codefol.io

https://codefol.io/speaking/rubyconfth2022

